

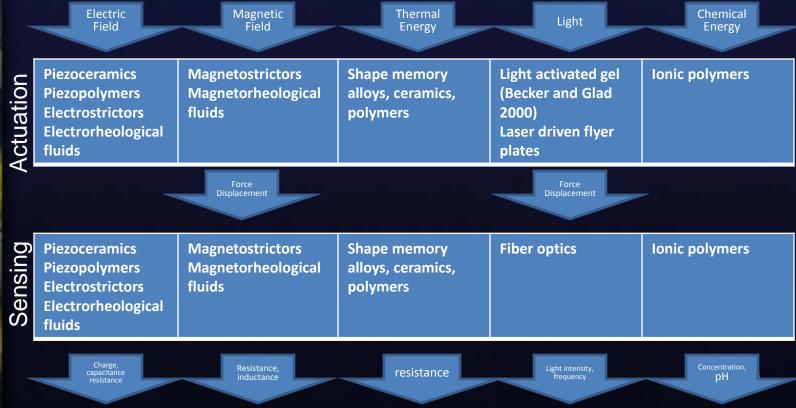
Smart Materials for Fuzing

55th ANNUAL FUZE CONFERENCE MAY 24, 2011

Presented By:
Daniel Peairs
Scientist IV, L-3 Fuzing & Ordnance Systems

Perry Salyers, Ed Cooper

This presentation consists of L-3 Corporation general capabilities information that does not contain controlled technical data as defined within the International Traffic in Arms (ITAR) Part 120.10 or Export Administration Regulations (EAR) Part 734.7-11.


Outline

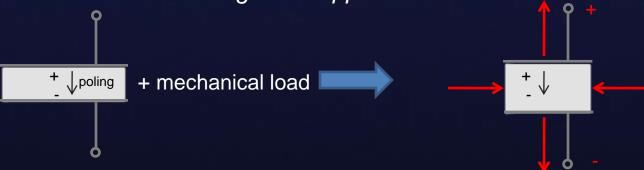
- Presentation Objective: Review several smart materials and potential applications to fuzing and ordnance
- Smart material overview
- Piezoelectrics
 - Damage sensing, power harvesting
- Shape Memory/Superelastic Alloys
 - IM, self-healing, safe & arm applications
- Magneto/Electro-rheological Fluid
 - Suspension, safe & arm
- Conclusions

Smart Material Classification

- Materials converting energy/fields into other (especially mechanical)
- Many definitions, other names and related areas
 - Intelligent materials, multifunctional materials

 Smart structures use these materials to provide integrated sensing, actuation or control and structural integrity

Why Consider Smart Materials?


- Increased functionality
 - Monitoring functions
 - As munitions age, increased likelihood of malfunctions.
 - Sensing solutions can help predict individual or subpopulation reliability
 - Environment sensing
 - Both during storage and at use
 - Adaptivity
 - Shape morphing and control
 - Self repair
- Reduced size
 - Higher energy density
 - Smaller munitions
 - Smarter munitions
 - · Fit more into the provided space
 - Integrated fuzing guidance and targeting

Piezoelectric Background

- Generally high force/ low stroke
- Direct effect

- Generates electric charge with applied force

- Converse effect
 - Generates mechanical force/ displacement from electric field

Piezoelectric Material Background

- Piezoelectric effect found in crystals, ceramics polymers and biological materials
- Common piezoceramics lead zirconate titanate (PZT), Barium titanate, lead metaniobate (PMN)
- PZT high piezoelectric and dielectric constants
 - Many formulations of PZT exist Hard, soft
- DOD-STD-1376 Originally defined standard material types for Hydrophones
 - DOD or Navy Type I- VI
 - Hard or soft, Curie point, Self heating susceptibility (high electric drive potential)
- Manufacturers generally report material properties

Material Modeling

3D constitutive equations

$$\begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ S_6 \end{bmatrix} = \begin{bmatrix} s_{11}^E & s_{12}^E & s_{13}^E & 0 & 0 & 0 & 0 \\ s_{11}^E & s_{12}^E & s_{23}^E & 0 & 0 & 0 & 0 \\ s_{21}^E & s_{22}^E & s_{23}^E & 0 & 0 & 0 & 0 \\ s_{31}^E & s_{32}^E & s_{33}^E & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & s_{44}^E & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & s_{55}^E & 0 & 0 \\ 0 & 0 & 0 & 0 & s_{66}^E = 2 \left(s_{11}^E - s_{12}^E \right) \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \end{bmatrix} + \begin{bmatrix} 0 & 0 & d_{31} \\ 0 & 0 & d_{32} \\ 0 & 0 & d_{33} \\ 0 & d_{24} & 0 \\ d_{15} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}$$

$$\begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{24} & 0 & 0 \\ d_{31} & d_{32} & d_{33} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \end{bmatrix} + \begin{bmatrix} \epsilon_{11} & 0 & 0 \\ 0 & \epsilon_{22} & 0 \\ 0 & 0 & \epsilon_{33} \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}$$

Simplified to one dimension

$$S_{1} = S_{11}^{E} T_{1} + d_{31} E_{3}$$

$$D_{3} = d_{31} T_{1} + \varepsilon_{33}^{T} E_{3}$$

Typical Material Constants

PZT 5H (Navy Type VI)					
d ₃₁ (m/V)	d ₃₃ (m/V)	Elastic modulus (N/m²)	Density (kg/m³)	ε ^Τ ₃₃ (F/m)	Curie temp (°C)
-320x10 ⁻	650x10 ⁻¹²	6x10 ¹⁰	7800	3.36x10 ⁻⁸	230

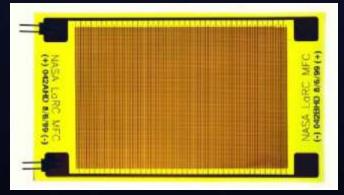
$$+egin{bmatrix} 0 & 0 & d_{31} \ 0 & 0 & d_{32} \ 0 & 0 & d_{33} \ 0 & d_{24} & 0 \ d_{15} & 0 & 0 \ 0 & 0 & 0 \end{bmatrix} egin{bmatrix} E_1 \ E_2 \ E_3 \ \end{bmatrix}$$

 $d_{33} \sim 2x d_{31}$

Since E is scaled by distance (V/m) field applied across thin dimension


Common Configurations

Patch


- Generates /responds to plate and beam bending and tensile/compressive waves
- Unimorph and bimorph configurations
- Stack
 - Takes advantage of d₃₃ coefficient
- MFC
 - Uses d₃₃ coefficient for in-plane motion

Stack actuators from APC International www.americanpiezo.com

Patch actuator

MFC actuator

Piezo Sensing/Actuation Examples

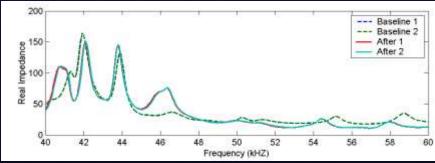
Sensing

- Accelerometer
- Power harvesting
- Passive dampingshunting (skis)

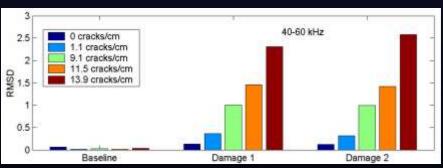
ctuatior

- Atomic force microscope position control
- Speakers
- Buzzers
- Anything "ultrasonic" (humidifiers, cleaners)
- Depth finders/SONAR

- Structural monitoring
- Vibration control


Current Fuzing Applications

- Dozens of piezoelectric fuze patents
- Rocket Propelled Grenade
 - Acceleration at launch strains piezoelectric fuze that ignites primer.



Piezo-Based SHM

- Utilizes high frequency vibrations to detect local changes in materials
 - Stiffness changes due to cracking
 - Increases in damping
 - Interface changes such as loosening of a joint.
- Electrical impedance is directly related to mechanical impedance
- Wave propagation approach can also be utilized
 - Measure reflections, attenuation, delay due to damage

Impedance response

Matrix cracking in carbon fiber composite

Damage Metric

Shape Memory Alloy

- NiTiNOL developed at Naval Ordnance laboratory
- Shape memory effect: result of change in crystal structure
 - Martensite at low temperature- twinned crystal structure
 - Austenite at high temperature- body centered cubic
 - Reverts to original undeformed shape when heated beyond transition temperature
 - One-way and two-way effects
- Stress can also cause transition Superelastic effect
- 6-8% strain
- Relatively slow response time
 - Speed increased for low volume (faster temperature change)

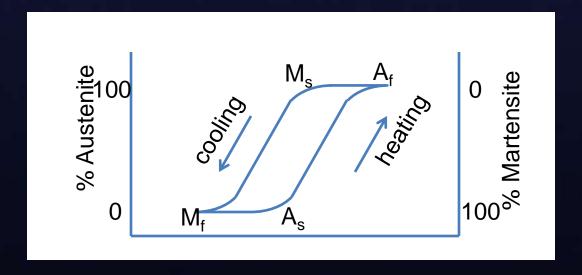
Load

Load

Low Temperature Low Temperature

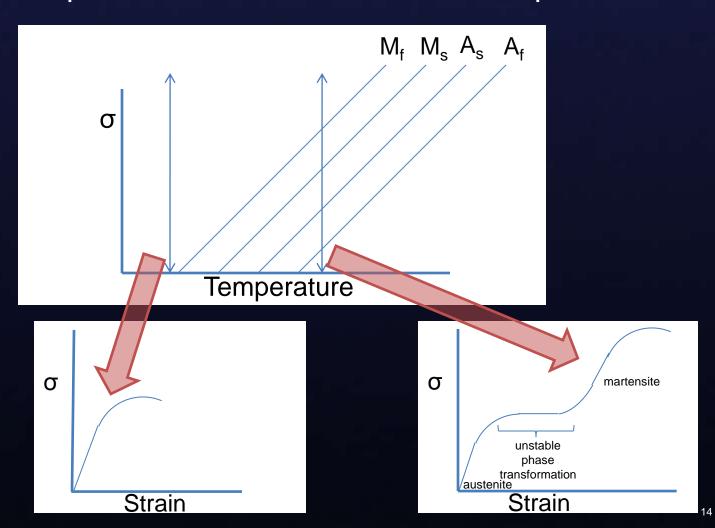
Monoclinic Deformed

Structure Structure

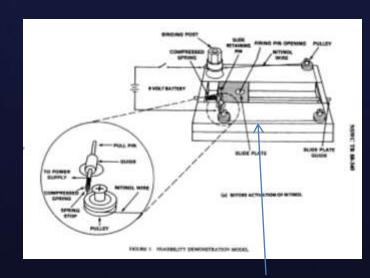

High

Temperature
Cubic Structure

Temperature Transition

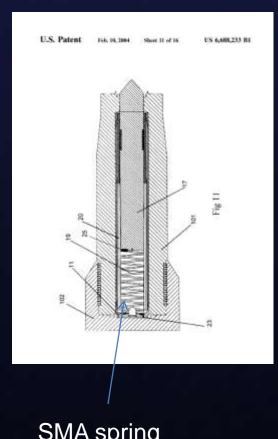

- Width and temperature of hysteresis can be controlled
- State dependent on path to current temperature

Superelastic Behavior


 Stress-strain curve depends on material temperature relative to transition temperature

SMA Fuzing Examples

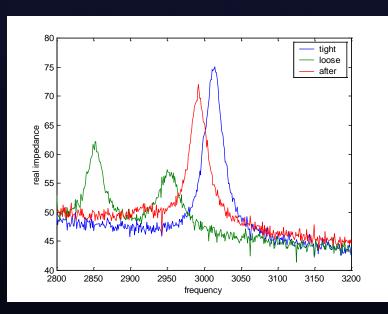
- Damping
- S&A actuation
 - Goldstein and Weiner
 - Investigated effects of prestrain on transition temperature
 - Activation temperature up to 150 C
- Non-pyrotechnic separation systems
- IM compliance
 - Marchand et al. Mine Clearance System rocket-towed linear demolition charge makeover
 - SMA proposed for release rocket motor case at both ends and actuate thermal igniter for Slow-Cook mitigation
- Manufacturing
 - Removable fixturing

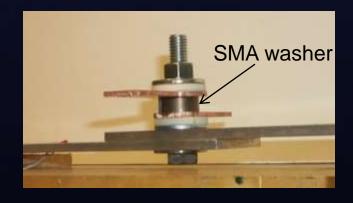


SMA wire

Reusable SMA Projectile Translation

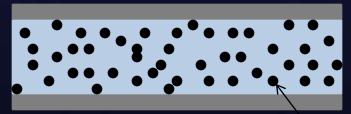
- Recoil, launch stress can be reduced by translating projectile a small distance forward prior to launch
- Typically accomplished by secondary charge
 - Not reusable if launch is aborted
- SMA spring suggested for Cased Telescoped **Ammunition**
- Manole et al. 2004 US patent 6,688233B1



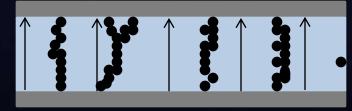

SMA spring

Self-Healing Bolted Joint

- Proof-of-concept testing
- Heated with external heater or resistively
 - Competing for electrical and thermal isolation and high stiffness
- Joint tightness monitored with PZT
- SMA ring sized to provide tension to compensate for reduced torque tightening


Impedance response of joint

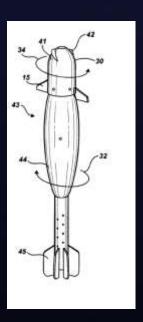
Magnetorheological (MR) Fluids

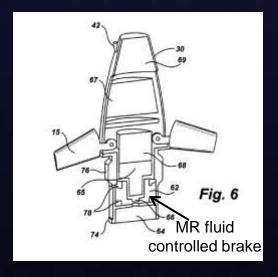

- Change viscosity with magnetic field
- Response times on order of 10 ms
- Viscoelastic solid below yield stress when field applied
 - Field dependent modulus
- Newtonian fluid when field is off

No magnetic field

ferromagnetic particles

Magnetic field present


Possible Fuze Application


- Research on self-regulation of delay arming time of MR fluid fuze (Hu et al. 2010, Jiaxing University and Nanjing University of Science and Technology)
 - Permanent magnet used to keep MR fluid as a solid during storage
 - Setback causes magnet to separate and rod impacts a piezo energy harvester
 - Energy harvester charges capacitor
 - Capacitor discharges into coil to regulate MR fluid viscosity
 - MR fluid viscosity controls flow through an orifice to control arm time

MR Fluid Braking

- Morris et al., US Patent 7354017, 2008,
 Projectile trajectory control system
- Used to control de-spin of a projectile with braked rotating fins.

Summary and Conclusions

- Smart Materials offer alternative sensing and actuation systems
 - Piezoelectric materials provide both sensing and actuation at high speed and forces, but low displacement
 - SMA provides high displacement and forces, but low speed
 - MR fluid provides fast response time and relatively high forces
- Numerous unexplored applications for these materials exist including in the fuzing and ordnance environment